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L-STATISTICS WITH SMOOTH WEIGHT

FUNCTIONS JACKKNIFE WELL

by

William C. Parr and William R. Schucany

ABSTRACT

The behavior of linear combinations of order statistics (L-statistics)

under jackknifing is discussed. The asymptotic behavior of a jackknifed

L-statistic is produced, and the pseudo-value based variance estimate is

shown to be consistent under moderate smoothness and a trimming condition

of the weight function. The results extend easily to functions of L-sta-

tistics and thus answer a question posed in Miller (1974). Monte Carlo

results support small-sample applicability of the large-sample results for

the construction of approximate confidence intervals.
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1. INTRODUCTION, NOTATION, AND DEFINITIONS

Let XI, X2, ..., Xn be a random sample of size n from a

distribution with distribution function F, and let Xln' X2,n'

S.., X denote the associated order statistics. For a fixed

weight function J(u) defined for 0 < u < 1, we define the

L-statistic

san i1 i i(xi1.1

Other definitions, typically asymptotically equivalent to that
in n

above, include T J(-)X and U - - c Xine i i- n i,n n n . i,n i,n
i/n

where ci,n - { J(u)du. S. is chosen for study in this paper(i-1)/ fn

as being typical of actual L-statistics used in practice (use

of Un, in which the integration "smooths" J, might result in

fewer conditions on the weight function).

L-statistics of the form of S are often used in esti-n

mation problems since they are typically computationally simple

and (at least for location and scale problems) asymptotically

efficient given the proper choice of the weight function J.

Thus, they are often good choices a) as estimates for their

own sake, b) as good starting values for iterative estimation

i own
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procedures, and c) as quick and consistent estimators of

nuisance parameters (such as unknown scale in regression

problems) to minimize the number of parameters being simultan-

eously estimated via an iterative procedure. Herein we consider

primarily a), where L-statistics are used to make parametric

inferences on their own. However, Sn is often biased as an1n

estimator of S = f Q(u)J(u)du where Q(u) - inf{x:F(x) > u)

as is s(Sn) biased for g(S ) for many choices of g. Also,

there seems to be a dearth of procedures for consistent non-

parametric estimation of the variance of /n(S n - S ). (But see Sen

(1979) in this regard.) For both of these problems, reduction

of bias and consistent nonparametric variance estimation, the

jackknife is a natural choice as a possibly non-optimal

rough-and-ready tool.

The ordinary jackknife of Sn may be written as

1n

n ni: i,n

n i

JU (1.3)

" i - 1)J(- ) + (n- i)J ] x n

n5-n-l 1s i
n Sn n il -

n n n'

JL
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where the ith pseudo-value is

S n " Z i x -1~.). . - n
Si~( +n j1L- J'n -1n Jn J-~ ,n Jn

(1.4)

SW )  is the same L-statistic computed after deletingn-l b X~

from the sample, and Z h(i) is understood to be defined to be
i-a

zero if a > b. (See Miller (1974) for basic definitions of

the jackknife and pseudo-values in general.) Note that the

definition of J at 0 and 1 is completely arbitrary since the

associated terms will cancel out in (1.3).

We further define the sample variance of the pseudo-values

as

1 n1pn- = (.,- s )  . (1.5)
p i E ( 'n S n)2

i-i

2. RESULTS ON JACKKNIFING L-STATISTICS

Theorem 1: Let Xl, X2, ..., Xn be a random sample of size n

from a distribution F with EXIP < - for some < p 1.

Further, let S and S be as defihed by (1.1) and (1.3). Ifn n

a) p - 1 and J' satisfies a Holder condition with a >-!, or

b) ' p < 1 and J' satisfies a Holder condition with
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--- then Vn( n  Sn) n 0 with probability 1 as
p 2',then

n

Proof: From elementary algebra, Sn Sn  E D (i ,n)X',

where

D(n) =_ j i

3<i<n .

Since J' obeys a Hlder condition with exponent a we have

i i

+n(n+ 1) + Bin 1 n(n+ 1)'
i-il

and (with < C
n ~in2 < +l
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j n

-j - + it i.- -1 -  '

n(n + 1)
+ (Jn(1in-) - II'+ -

in~l n(n + n)nI

vhere the B inl and Bin2 are all uniformly bounded in absolute

value by some finite positive constant B. Hence,

D i U ,n) - _ rA - 2 - - i B f i ) 1+

-+l] 'n2(n + 1) n inl n +I)

n in2 In(n+)I

Thus,

n

nin  - snl _ n E IDj(i,n)llXi,,ln n 1=1

( 9I ln lxil<nl'~ sup IDj(i,n)l E-
-- 1<_<. u wl n (1+2 i) / 2

mZ •
n

" -I i ' ' = 'd- -Irlli. . .. ... .. .. .. . . .... . ...... .. ..... i i~l - "
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If 0<1+ <1 and E IXIl+2 <, with J' satisfying aIf 0< 1+ 2a 1

Ho1der condition with exponent a, Z n 0 with probability

one, by Marcinkiewicz' theorem (Loeve (1977), p.254). If

E7IXI < - and J' satisfies a H6lder condition with exponent
1

a >, Z - 0 with probability one, using the strong law of

large numbers.

Several comments are in order:

1) This result is the univariate analogue for L-statistics

of result J.1 of Reeds (1978) for M-estimators. The extension

to the multivariate case is immediate and hence omitted.

2) The moment condition on F is seen by an inspection

of the proof to be superfluous if S "trims", i.e., if J(u) - 0

for u j (0,e) U (1 - e,i) for some 0 < c < 12"

3) If further /n(Sn - SO) d- N(0,a
2), where

a2  f fJ(F(x))J(F(y)) (F(min(x,y))

- F(x)F(y)]dx dy > 0 , (2.1)

d
then /n(Sn - SO) - N(O,a2) likewise. This is true if the

conditions of Theorem 1 hold with p - 1 and ' is of bounded



variation(using the result of D. S. Moore (1968), with a
2 <

4) Since J" bounded on (0,1) implies that J' satisfies

a H lder condition with a - 1, the condition on J and F in the

theorem may be replaced by the stronger but intuitively clearer

condition that J" is bounded and EFIXI2 3 < _.

5) A similar theorem was stated under much stronger

conditions by Thorburn (1976).

6) Theorem 1 yields a law of the iterated logarithm for

the jackknife ofa linear function of order statistics from the

corresponding law for the original statistics. Using Theorem 4

(Example 1) of Wellner (1977b).,we obtain that if EFIXI 2+c <

1
for some c > 0 (and a >

1

/n Iss - f Q(u)J n(u)dul
aolim supn  0 in

/ a2 log log n

with probability one, where J (u) - i- for - 1 < u <
nn n

1.iin, and Jn(0) - J- 1
n n+ 1j

7) Similarly, a Berry-Esseen rate for S follows directly

from that of Helmers (1977). If EFIX13 < 1I3(u)IdQ(u)<
0

and a2 > 0, we quickly obtain that

sup x IFn*(x) - *(x) 0(n1- Y2)



where F n*(x) is the cumulative distribution of (Sn - ES n])/(VarS a 2

and t(.) is the standard normal cumulative.

The following theorem gives conditions under which the

jackknife provides a consistent estimator of the asymptotic

variance of /n(Sn - S ) and /n(Sn - S ), and hence makes

possible the construction of asymptotically pivotal quantities.

Theorem 2: Let *,.. Xn be a random sample of size n from

a distribution F, and let s 2 be defined by (1.5). If there
p 1

exist positive numbers e and 8 such that 0 < 8 < e <

(let C(c) - [0,e) U (1 - e, 1]); J(u) - 0 for uEC(e),

tQ(u) > B > 0 for uCC(c - 6), and J

satisfies a lrdlder condition with exponent a > 0, then

s 2 P)..-2, with a2 given by (2.1).
p

Proof: Note that a2 - Var(H(U)) where U 1% u(0,l) and
1

H(u) - Q(u)J(u) - f O(t)J'(t)[t - I(u < t)]dt, translating
0

- -. , ,

L~ l .. . ..! ' ' " I ' : . .
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the results of Boos (1979, eq.3.3) into the quantile domain and

then integrating by parts. Now, from (1.5), it will suffice for

the desired result if we show that

sup Is_ - H I 0 as n. (2.2)

n nj

If (2.2) holds, then s 2 Z (H...L.. + n] r n1J 2+0 ()
l~ n~ n~

Furthermore, - H2  i and wil

1 1

converge to f H2 (u)du and f H(u)du respectively,giving
0 0

s 2 a. a2. By definition,
p

n i-i n

Si E ~~j(W x E ZJ(J-)Xj - EJ i~~)ji' ul(~ i ,n Jul a J,n i~i+l~l n 1)Xi,n

o- x ( )-oI
- J r i n - J ) IX_.

(4.. 1 
= 

n+1

- 1]X 1  +R
n + 1 9 -n nli
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n
-( TXi, n n~ + n~-' ~rn

+ Rn21

using Taylor expansions and the HMlder condition on J'. Also

using trining condition on J, the remainder term is such that

sup IRn2i = op(1) as n e.
l<i<n

From the continuity and boundedness of J and the fact

that fQ(u) > B > 0 wherever J(u) 0 0, J(--+iJXi,n n

11 Qi +l) + Rn31' with sup IRn31iI - o (1). Further
1<i<n

n '1 n-- J n_ . Xj - f Q(t)J'(t)F(t)dt with probabilityJ-MI n + 1 J,n 0

one from Corollary 2 to Theorem 1 of Wellner (1977).
i

Then, for fixed K let ui - K + 1 * i - 0, 1, ... , K + 1.

It follows easily that

-- [ E -7+ )X - f J'(t)Q(t)dtLi n jm[nui] X±,n u

1- f J'(t)I(ui < t)Q(t)dt.
0
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Since K is finite, the convergence in probability is uniform

in i, i - 0, 1, ... , K + 1. Furthermore, letting inf Iui-uI
i-1,.. .K

be achieved at index value i*,

sup E i-x J4
O<u<l aJ- [nu] (7-w(c i

sup IJ'(u)I n n
O<u<l K + 1

which may be made less than any specified positive number in

probability through a sufficiently large choice of K. Hence,

(2.2) holds and s2 P_1. o2 . by the uniform continuity of

uflJ' (t)Q(t)dt.)P

Some pertinent couments follow:

1) This result provides a method for consistent variance

estimation for L-statistics, being the univariate analogue for

L-statistics of result J.2 of Reeds (1978) for M-estimators.

2) Finiteness of a2 is clearly implied by the tri-Iing

and boundedness conditions on J.

3) This result makes possible the construction of

nonparametric approximate confidence intervals for
1

S 0 f Q(u)J(u)du, using as pivotal quantitieso0

/n (Sn - So) Vn(Sn - So)
or

p p
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This is, to the knowledge of the authors, the only nonparametric

method of consistent variance estimation for L-statistics (i.e.,

in the absence of a specified parametric form for the unknown

density) other than that of Sen (1979) discussed below. For a

specific parametric family, a consistent estimator would of

course typically be provided by

a2 - f f J(F;(x))J(F;(y))[F^(mn(x~y)

(2.3)
- F;(x)F;(y)]dxdy

where Fe, 8 E f is the parametric family of densities and 8

is a weakly consistent est.rnator of 0, posibly multivari--a.

4) It would be interesting to compare the properties of

this estimator with that proposed by Sen (1979), which is

essentially

a f f J(Fn(x))J(Fn(y))[Fn (x,y) - Fn (x)Fn (y)]dxdy, (2.4)

-- M -a4

obtained by subsituting the empirical distribution function

F for F in (2.1).

5) Relaxation of the trimming condition on J, which

would require either moment conditions on F or joint conditions

governing J(u) and Q(u) as u approaches 0 and 1 is questionable from
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the standpoint of robust inference and hence Theorem 2 is

stated as being of interest in its own right. Theorem 3,

however, obtains strong convergence of s 2, while dropping theP

tri-uIng condition, at the cost of moment assumptions.

Theorem 3: Let Xl, ... , X be a random sample of size n from

a distribution F with EIX124 < - for so-me c > 0. If J

is continuous on [0,1], then s 2 aZ with probability one.p

Proof: We proceed as in the proof of Theorem 2 to write

- -j x' _- __ n it,
in Xin - n - I(j . i))Xjn

in
n E (J'(nnji ) - V i (j < i)

where = < n and in particular n - -n nji -n nii n +n1
The proof is then concluded by showing j) 1 Z

- I S , n 0~ )~~u
n 1

and i)i ZiS2 n a 2 + (f Q(u)J(u)du)2, both convergences

being with probability one. Proceeding with the first part,
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Si,n n 1j n n n] Xn
~~~ S Xi - n

in in

niln .1 nji -( 1 dX n

1
The first term converges to f Q(u)J(u)du with probability

0
one by Theorem 4, example 1 of Wellner (1977a),

1 1 J '~ ~L which
The second term is - f L -j z n +1 (1 is

converges to 0 with probability one by the same result (since

E n J'+ Xj converges ton n1jn+l j,n

1
f Q(u)uJ'(u)du with probability one). Lastly,

0 n 1El njE (J'(nnJi) - )n- (Ji i) ,n

in-1 n- JI I1n+l I )Xi
n

.. suplJ'(n 
V) - J'i I X-ni

nji Wn1 n

which converges to zero with probability one using the uniform

continuity of J' and the first moment assumption on F. For

the second part,
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n n 1i) XiL1 - -

-J-I - ) 12i~ft ft i-
[j W X (n _i_ _iY I() ,n ]

1 Xi' _ i 2

-n -1 nl i n : J'n+l n (Jii - -- ;

n n+

in-

-- E (J (:j i  - i I(J i) +' 1
ni n+n -n

n Wi +  (An j i

n~~. j! j x ,n

in ri I 1_1

j-l JJ1 tn+1tn+

Al n + 3n

The third term, A3n' is less than or equal to (in absolute

value)

[n+' - "l Xil 2
n i uplJ'(nnji) - J. li)

which converges with probability one to zero via the strong

law of large numbers and the continuity condition on J. The

-. -.
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second term, A2n, is disposed of in similar fashion. The

first term, Ain requires a more extended analysis.

E. I zl ,,_+r j~ _-. I._ Q( .1 1) I1 n J2( i2n2 n i j= 1 ..J i - ,n

i2. n nn

2. r i 1 , (j
ni.jj(-n+-Iji,n j Mi IJi -I

B in + B2n + B3n

1
Bn * f Q2(u)j2 (u)du with probability one by Wellner's Theorem 4.

0
By'a similar argumiat and raarrangement c. tc=3,

1 2 1 1
B2 - ( f Q(u)J'(u)udu) - 2 f uJ'(u)Q(u)du"f J'(u)(1-u)Q(u)du

0 0 0

+ f1 fQ(v)J'(v)dv) 2du
0 0

and

1 1
B3n -2 f Q(u)J(u)du * f Q(u)J'(u)udu

0 0

1 u- fq(u)J(U)[oI Q(v)J '(v)dvjdu0
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both convergences holding with probability one. The result

then follows by integrating the expression for a2 given by (2.1)

by parts and observing that the quantity to which s 2 convergesp

with probability one is indeed a2. (Note that the appeals to

Wellner's result are actually to a slight modification of it

allowing random Jn which satisfy the boundedness and convergence

conditions with probability one.)

ExampZe I.: The sample mean, for which J(u) - 1, clearly

satisfies the conditions of Theorem 1 (but not the trimming

conditions of Theorem 2) if EFIX 12 3 < . In fact, Sn = Snn
E (Xi )2

in this case, and g2p2 n 1- 1 -- F2  if EVIX12 <

Theorem 3 requires EFiXI2* <a for some e > 0. Thus, the

usual strong law for the sample variance "Just fails" to

be a corollary of Theorem 3.

ExampZe 2: While the ordinary trimmed means do not satisfy

the score conditions of Theorems 1 and 2, a smoothed version

causing J to return to zero in such a way that it is differ-
i1

entiable with J obeying a H~lder condition with a > - would
2

satisfy those conditions. We assume that the modified score

is also zero on C(e).
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Ezo eZG 3: Gini's mean difference (J(u) - u - 1.) and the

optimal score for location estimation for a logistic population

(J(u) - 6u(l - u)) clearly satisfy the conditions of Theorem 1

if EF(X) < - and those of Theorem 3 if EIXI2+ c < -, but violate

the trimning conditions of Theorem 2.

In most instances, Theorems 2 or 3 will be of primary

interest, providing methods for the construction of approximate

confidence intervals based upon L-statistics (and one-to-one

functions thereof). The bias of an L-statistic will often be

small (but see Section 3 in this regard), and hence S will

be of limited practical use for the purposes of estimation

with reduced bias. However, the end goal of an analysis may

be to estimate or construct approximate tests or confidence

intervals for g(S ). For estimation, g(S n) may suffer from

severe bias if g is highly non-linear near S (recall that

g"(S o )

EF[S(Sn)] ' g(So) + 2 Var)F(Sn Hence jackknifing

g(S n) would be of interest in such cases for reduction of bias.

If g is non-monotone, confidence intervals for g(Sn) obtained by

finding a confidence interval for S0 using /n(Sn - 0 )/sp as

an approximately standard normal pivotal quantity and taking

the image of such an interval under g may well result in

longer intervals than would be obtained by pivoting about g(S).

...., v~v 'v .': .,
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Thus, it seems to be of independent interest to study the

behavior of g(S n ) under jackknifing. The following theorem

parallels Theorem 1, establishing that g(S ) and its jackknife

have the same limiting distribution.

Theorem 4: Let X, , X2  Xn be a random sample of size

n from a distribution F with E[IX14 3] < -. Let J' obey a

Holder condition with a > !. If g is a function with a bounded

second derivative in a neighborhood of S0 , and g(Sn ) -
nn

a- Wng(SE (Sn) , the jackknife of g(S ), then
ni n i- l n

/n(9(S) - g(S)) - 0 with probability one.

Proof:

/n(g(Sn) (Sn)) a/n (n - 1) )(S M S
n ni -1

L 9 )(SnMl- Sn)2]

-~ ~ in - - . -1-- n. ..
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(2.5)

" !LI g'(S )An(S - S )

n

2n in r)n-I n

where is between S and S .
) To justify this expansion,

we need to prove

sup Is - S 0 with probability one.

W r r_1

n-l n - lJ n ,+j jn

- J XiJ

i-i J[ L n' + 1)J-1
joi

+ ('(nnj) - ++ 1) }

1 1 -jH j Xi" J ,n - ) Xi,n
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- nn 1) n(n + 1)(n 1)"  +T
joi

+ Wj ( n j-T'+-+-]}
+n(n + 1)(n- 1) x) Xn

J i ,n

So

s u p I n - s nI I - 'T xsupIs1)- nJ< xj,nl + . sup 'j(u)lI(IX J+IX1,nl)
l<i<n -- J l n O<u<l

with M determined by the bounds on J and J'. Finally, this

expression converges to zero with probability one by the strong

law of large numbers and the fact that max(IX lnI ,Xnn1)/n -0
with probability one if EFIXI < -.

The first term in (2.5) converges to zero with probability one by

Theorem 1. The second term, denoted by Rn, can be bounded as follows,

n - 1 n -,1 nn -(1) - Sn)2
IRI - 127n i1 (in n-1 n . 2 - sn)2

where Ig"(a)j L for a in some neighborhood of So, for n

sufficiently large.
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2

n

_ L (~n -1 M' -ixJ
I~~~ ~ lxi TI(E,'jnl)2

j .

+ jny E ,

2M sup IJ(u)I
O<u<l n

+- r" r iv 1 2)
+ n 3  [ji-.IJ,n j -- G with rpobability O.nC

by the moment condition on F. Hence, the theorem is established.

Naturally, the moment condition may be omitted if J trims.

The analogous result on a consistent variance estimator follows.

Theorem -: Let , ... , be a random sample of size n from

a distribution F obeying the conditions of Theorem 2. Let J

satisfy the conditions of Theorem 2 and g have a bounded second
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derivative in a neighborhood of S 0 If0

n M S
s ) - (n-1) E (g(Sn-) - g(Sn)) , (2.6)P(g) iminl

then s2 0 (g'(S ))2a2, with a
2 given by (2.1).

p(g) o

Proof: The proof proceeds by second-order Taylor expansion

of the g(Sn I) about S, and then follows the method of

Theorem 2.

It should be noted that Theorem 2 (1) is (is not) a special

case of Theorem 5 (4) with g(.) the identity, due to the

identical (additional) conditions imposed on F and J in the

latter theorem.

If the conditions for both Theorems 2 and 4 are satisfied,

asymptotically pivotal quantities for the construction of

confidence intervals for g(S0) include

/n(S(S - g(S0))

in
p(g)

and
/n(g(Sn) - g(S ))

g'(Sn )sp

in
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If conditions for Theorems I and 3 hold, g(S) could be

replaced by g(S n ) and g'(S n ) byg'(S n)(or even g'(S n) if g has

a bounded third derivative in a neighborhood of S ). The0

question naturally arises as to which choices would be best

in moderate-size sample applications of the above results.

The issue of what quantity to jackknife, that is, whether to

use

/n(S -S) Vn(g(S)- g(S))
or

p p(g)

has not been addressed ina systematic fashion in the literature.

However, the common suggestions of Miller (1974), p.12) and

Efron (197, p.1920 that thc function t2 be jackknifed should

-1be variance stabilized are reasonable, for example tanh r does

jackknife more satisfactorily than r, the ordinary sample correlation

coefficient. Using this advice, when estimating a function g

of a location parameter S., the location parameter estimate Sn should

itself be jackknifed to produce a variance estimator. In other words,

Z2n is recommended.

3. TRIAL BY NUMBERS

While the above results give a large-sample justification

for use of the jackknife method for the creation of approximate

confidence intervals, they leave unaddressed questions
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regarding-appropriateness of the technique in small-sample

situations. Accordingly, a modest Monte Carlo study is in

order both i) to relate the large-sample theory to samples of

a size likely to be encountered in practice, and ii) to

explore the behavior of the jackknife for L-statistics whose

score functions violate one or more of the regularity conditions

of Theorems 1-4. All computations were performed on the

AMDAHL 470 V/6 at Texas A&M University.

Only location parameter estimation is considered, that is
1

J(u) > 0 for 0 < u < 1 and f J(u)du - 1. The distributions
0

considered are i) N(5,1), a normal with mean 5 and variance

one. ii) a logistic with mean 5 and scale parameter 1, with

F(x) - I+ e- (X-5)]1- 1 , < x < ,

and iii) u(4,6), a uniform distribution on the interval

(4,6). Five hundred random samples of sizes 5, 10, 20 and 40

from each of the above three distributions were examined. The

score functions considered are

IL I. --. ...
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Jl() 0 0 < u < .05

-.23.53 (u - .05) .05 < u < .10

- 1.1765 .10 < u < .90

- 23.53 (.95 - u) .90 < u < .95

-0 .95< u <1,

a "smoothly" trimmed mean designed to obey the trimming

conditions of the theorems but to fail to be differentiable

at some points in [0,1];

J2(u) - 4u 0 <u < .5

- 4(1 - u) .5 < u < l.0,

a "triangular" weight function neither trimming nor being

everywhere differentiable; and

J3(u) - 6u(l - u) 0 < u< 1

a score function meeting all differentiability requirements

but failing to trim.

Unfortunately, even wit& the above three symmetric score

functions which integrate to one and synmetric parents,

biases can result due to the fact that

1. Table 1 gives values of 1 n i
K.E n K + -
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for n - 19, 20, 39, and 40 and K - 1, 2, 3. Note that a value

of 1 corresponds to no bias.

(TABLE 1 ABOUT HERE)

In fact, often such biases will die out at the rate of 0(1/n2)

(obtained by viewing n [J( - ] as an application of the trape-
1

zoidal rule in approximating the integral f J(u)du - if J"
0

is bounded and continuous the error is 0(1/n2)). Hence, the

ordinary jackknife would be of little or no use in dealing

with these biases. Also, a practitioner using L-statistics

would doubtlessly use the modified L-statistic

S 1 - t -l J) X i ' n

n n i

to guarantee unbiasedness. All of Theorems 1-5 continue to

hold for these modified S n  if they hold for n so long as
nn

lin n(1 - L ) - 0. Based upon the 500 samples

for each sample size and distribution combination the

following are estimated:

' - = "~ _ '77 = = " . .
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1. Bias Factors for L-Statistics

n 2 3

19 1.053 1.053 1.050

20 1.048 1.048 1.048

39 1.026 1.026 1.026

40 1.024 1.024 1.024
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a) Variance of S *

b) variance of S n  the jackknife of S n

c) Mean of s 2/n, the jackknife variance estimatorp

d) Mean of s p/n, the jackknife standard deviation

estimator

e-f) Percent coverages of approximate 100(1 - a)%
1

confidence intervals for f Q(u)J(u)du, obtained as
0

S * + t s //n , where t is the2 2
100(1 - -) percent point of a t-distribution with

n - 1 degrees of freedom, for e) a - .10, and

f) a - .05.

and g-h) Percent coverages for confidence intervals identical

to these above, but centered on Sn*, for g) a - .10,

and h) a - .05.

Tables 2-5 present the results. It may be seen, even for

samples of size 5, that the approximate confidence intervals

maintain actual confidence coefficients close to the nominal

90 and 95 percent levels. Typically, the worst cases of

undercoverage seem to occur for, curiously enough, the uniform

parent. Intervals centered on S n  seem slightly better

in this regard than those centered on n although the
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observed differences are of the same order as the standard

errors of the empirical confidence coefficients. This may

be related to the typically slightly larger standard error

of Sn*. Consistent with the result of Efron and Stein (1979),

the jackknife variance estimator appears to be typically

positively biased as an estimator of the variance of S n*.n

For 28 of the 36 combinations of sample size, score, and

parent population, the estimated mean of the jackknife vari-

ance estimator was greater than or equal to the estimated

variance of Sn * . Out of the 36 combinations, Sn * had a larger

estimated variance than S * 27 times, with 3 ties (to 4

dcci=al places). 'owever, tha increase waR typically small

relative to the size of the estimates themselves. Interestingly,

the estimated bias of s //n as an estimate of the standardp

error of S * is small, perhaps indicating that while theU

variance estimate may suffer from a positive bias, the standard

error estimate is relatively better off. (Parenthetically,

ifs p//n were exactly unbiased for (Var(Sn*))1/2, then p2/n

would have a bias of order 1/n2 , assumng Var(Sn*) 0 0(1/n).)

4. APPLICATIONS

The large-sample results of Section 2, bolstered by the

favorable Monte Carlo results in Section 3, provide a metho-
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dology for robust inference in linear models, in particular for

completely randomized designs with multiple observations per

treatment. We consider the model

Yijn + ai + cij ,

1 1, 29 ... ,, t

j 1 , 2, ..., ni

where a i represents the "effect" of the ith treatment. Note

that we do not rule out a factorial structure for the t

treatments. If, instead of the usual assumptions that the

s£j are normally and independently distributed with mean 0 and

common variance, we merely assume that the ciJ are independently

and identically distributed, symmetrically about 0, we can

pursue an L-statistic approach to analysis of variance

(the symetry assumption is merely convenient - not necessary).

If we assume min(nl, n 2, ... , n t ) * t and min(n1 , n2, ... , nt)V
t

E ni -* a > 0 , then for a symmetric score function J(-)
b i-l

meeting the conditions of the appropriate theorems in Section 2,

we denote

i. 1n J-1 ." J ,ni i
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and si2 the corresponding variance estimate, where X J,n is the

jth order statistic among those receiving treatment i. We then

pool our variance estimates by

t

Z (ni -1)s 1 2

t
E (n - 1)
i-1

mimicking ordinary analysis of variance. Then, an approximate

n n
test for a contrast-E Ci &i ( -C, M 0) is provided by rejecting

n
the =null hypothcsis ( E C a 0) if ond nnlv if

zCS i  , Zf2 2 C 2

ift i - / i-n n '

with Z the 1 - 1 quantile for the standard normal. An

obvious modification in the critical point would permit

Scheffe-type procedures. Similarly, "robust" multiple

comparisons could be done. Robustness of these procedures would,

of course, depend upon the robustness and convergence rates

of the associated L-statistic for location - a well-studied

topic. Note that the "sums of squares" for this type of analysis

77 T."
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can be simply computed by separately computing Si and si2 for

each treatment, and then inputting these into any standard

analysis of variance package which will accept treatment means

and variances as input.

5. SUMMARY

The ordinary jackknife is acomputationally simple means

for the construction of large-sample confidence intervals
1

for functionals of the form So - 0f Q(u)J(u)du. Simulation
0

results indicate that the technique is effective for small

samples.
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